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Abstract
This paper explores the genetic characteristics
and clinical aspects of breast cancer using data
from The Cancer Genome Atlas (TCGA). The
study focuses on the genetic alterations in the
BRCA genes, which play a significant role in
breast cancer development. This study utilizes
unsupervised learning techniques to analyze
TCGA data, with the aim of identifying highly
transcribed genes and their impact on
biochemical pathways, as well as factors
influencing overall patient survival. Three
distinct clusters are derived from mutation
analysis, revealing patterns in patient
characteristics. Differential expression analysis
highlights the significance of certain pathways,
such as cell cycle and NK cell-mediated
cytotoxicity, in breast cancer progression. The
study discusses the clinical implications of
demographic characteristics, mutation types, and
pathway dysregulation. Despite limitations in
the clustering method, the findings contribute
valuable insights for potential targeted therapies
and further investigations into breast cancer
treatment strategies.

Introduction
One of the most common types of

cancer amongst women is breast cancer. It is the
second cause of cancer related deaths in the US,
after lung cancer. Ductal Carcinoma and Breast
Invasive Carcinoma (BRCA) for example
claimed the life of around 43'000 patients in
2022 alone. Though this number may seem high,
the death rate of breast cancer has been steadily
declining since 1989, dropping with an
estimated percentage of 43% over that time
period [1]. This is due to the improvement of the
early detection tools, as well as the ever
evolving research in the field.

At a molecular level, one of the main
drivers for breast cancer is the occurrence of one
or more genetic alterations in the BRCA genes.
These alterations may occur in one of the two

types of epithelial cells inside a mammary gland,
basal and luminal, and can yield a neoplasm that
can be split into five distinct subtypes:
Basal-like, Luminal A, Luminal B, human
epidermal growth factor receptor 2 (HER2), and
normal-like. These subtypes were discovered
during the early 2000’s, using unsupervised
learning models, and have since greatly
improved the quality of prognosis, since it
offered a measure for tumor classification [2].

According to data from the National
Cancer Institute and over a duration of 5 years
since diagnosis, LumA and LumB have the
highest survival rate, both above 90%, HER2
was around 85%, and basal had the worst with
77.1%. But the subtype of the tumor does not
determine the survival rate accurately, stage of
the disease at diagnosis is the crucial factor
when determining this metric [3]. These metrics
are great in comprehending the disease’s
progression, but leaves a lot of gaps in our
understanding of the underlying genetic causes
of this progression. of the intricate molecular
mechanisms and genetic factors contributing to
cancer development and progression is essential
for refining treatment strategies and developing
targeted therapies.

In our analysis, we aim to look at the
raw TCGA data, pre-process it, eliminating
irrelevant noise, then use unsupervised learning
techniques to collect different insights into the
data. Mainly, we aim to determine the most
transcribed genes and the implications of those
on the upregulation/downregulation of different
biochemical pathways within the cells, and how
that influences the overall survival. Furthermore,
we aim to determine the aspect that is most
influential in analyzing the survival of patients,
whether that would be subtype of BRCA, stage
of tumor, age, or any other clinical as well. In
doing so, we hope to be able to shed light on
valuable pathways or parameters that can be
tackled in biomedical research to help mitigate
some of the symptoms of BRCA.
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Methods
In this project, three datasets from The

Cancer Genome Atlas (TCGA) were utilized,
encompassing mutation, clinical, and RNA
sequencing data for patients with BRCA. Using
R subsetting methods, common patients were
identified, and data corresponding to those
patients across all three datasets were extracted.

This study began by analyzing patient
demographics in clinical data and their survival
outcomes based on their disease-specific
survival status. This was done by creating
Kaplan-Meier plots using R’s ‘survival’ and
‘survminer’ packages to visualize how long a
patient remains in the study before dying with a
tumor. This was to better understand how BRCA
affects each group and whether or not the study
should focus on a specific demographic.

Next, to enhance clarity in subsequent
analyses, various preprocessing steps were
explored. Specifically, mutation data underwent
multiple filtering approaches, such as the
inclusion of HIGH and MODERATE impact
mutations while excluding wildtype patients or
including HIGH impact mutations while
excluding wildtype patients, among others.
Through trial and error it was found that
preprocessing which excluded LOW impact
mutations as well as wildtype patients yielded
the best results. To implement this filter,
wildtype patients were identified by analyzing
the Mutation Annotation Format (MAF) and
examining patient samples with an insertion
mutation, specifically those with a dash in one of
the two 'tumorseqAllele' columns.

Mutation analysis first involved creating
bar charts to visualize the frequency of various
mutation data aspects. Subsequently, an oncoplot
was generated using R's pheatmap function,
incorporating patient IDs and gene names
(HUGO ID). This binary plot highlighted the top
three mutated genes, representing the majority of
mutations in the dataset. Hierarchical clustering
was then applied to the oncoplot data, resulting
in the selection of four clusters for further
investigation. These clusters were analyzed for
trends in subtype, age, race, radiation therapy
attendance, sex, and ethnicity.

The selection of four clusters was based
on the observation that, once clustered, the first
three were consistently similar in size, as well as
the second cluster predominantly comprising the
basal subtype. This choice aimed to highlight
clearer distinctions in the underlying cellular
pathways driving each cluster. Subsequent
analysis of patient characteristics within each
cluster served to validate the decision to choose
four clusters over alternative numbers,
demonstrating the most distinct separation
between each group compared to other options
when comparing cancer subtypes. Upon
observation, it was noted that cluster 4 had a
significantly different number of participants
compared to clusters 1-3. Consequently, cluster
4 and its participants were excluded from further
analysis.

Survival analysis was then conducted
using the clusters derived from mutation
analysis alongside the clinical data. A
Kaplan-Meier plot was generated based on
progression-free survival status and the duration
of progression-free survival obtained from
clinical data.

Differential analysis was conducted on
patients within each cluster with the RNA
sequencing data to uncover significant variations
among distinct clusters using R's DESeq2
library. The dataset was refined by excluding
genes with fewer than 100 counts across all
samples, ensuring a more robust analysis of
differential gene expression. The results were
further filtered to include only significant
findings with an adjusted p-value of 0.05. To
analyze the quality of the differential analysis
mapping, a heatmap was made using the top 10
most down and upregulated genes.

As there were 3 clusters, pairwise
pathway analysis was subsequently conducted
based on the results from the earlier differential
analysis. Gene annotation was performed using
R's AnnotationDbi and org.Hs.eg.db library,
translating gene IDs from ENSEMBL to
ENTREZ format. Utilizing the pathview and
gage libraries, along with kegg.sets.hs and
segment.idx.hs datasets, gene names and their
corresponding log2fold change data from the
differential analysis were mapped to their
respective signaling and metabolic pathways
using the gage() function. Finally, the top 5
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upregulated and downregulated pathways were
extracted for further examination.

Results
Clinical Summary

From the clinical data, a few
demographic characteristics of patients were
determined. Most patients were female, though
there were 10 samples from men. 697/1006
patients were White, 162/1006 were Black or
African American, 59/1006 were Asian, and
1/1006 were American Indian or Alaska Native.
There were 5 subtypes designated in the clinical
data, LumA, LumB, Basal, HER+, and Normal.
Black/African American participants were most
likely to have Basal mutations in comparison to
other ethnicities (appendix A, fig 1a). Similarly,
Asian participants were most likely to have Her2
mutations (appendix A, fig 1b). Something to
note is that because there is only 1 participant
with subtype data that falls within the
“American Indian or Alaska Native”, so no
meaningful conclusions can be observed in this
demographic. Survival analysis between
subtypes with similar samples sizes for each race
were performed (Appendix A, fig 2). No
significant conclusions could be drawn from the
Kaplan-Meier plots of White and Asian
participants due to high P values, however
between Basal and LumA subtypes in African
populations, those with Basal subtypes would
have worse survival outcomes. Higher stages of
tumors were observed to have worse survival
outcomes (appendix A, fig 3)

Mutation summaries
A closer inspection of our datasets

revealed a predominance of missense mutations,
composing 65% (66620/103314) of the total
variations in the pre-processed sample. The
second closest are frameshift at 9%
(9245/103314) of the total sample (Appendix A,
Fig 4a.). The most common mutation type, and
by a large margin, are SNVs accounting for 89%
of total mutation types (Appendix A, Fig 4b.).
Similarly, 89% of the variant types are SNPs,
followed by deletion at 11%, and with the
insertion and oligo-nucleotide polymorphism
(ONP) numbers being almost negligible
(Appendix A, Fig 4c.). The most commonly
mutated genes within our sample were PIK3CA,
TP53 and TTN. (Appendix A, Fig 4d.)

By looking at the plots, we can
determine that SNV missense mutations on
either PIK3CA, TP53, or TTN are the main
variations that are common to all the patients
within our sample. To visualize the prevalence
of each mutation type in each gene, we
generated a bar chart breaking down the
involvement of each variant class in the
mutation of each gene (Appendix A, Fig 5.). As
concluded, missense mutations dominate the
total mutations occurring in the 3 most mutated
genes. Using this data, we proceeded to generate
a heatmap of the top 3 genes, which will help us
further cluster our data.

Mutation data oncoplot
The oncoplot (Fig 1.)shows 4 distinct clusters (from
left to right):
1. The large blue section, indicating no mutation on
any of the 3 genes.
2. The section in the middle, representing the
intersection between TP53 and TTN.
3. The section after section 2 represents the cluster
containing only PIK3CA.
4. The rightmost section represents the intersection
between all 3 genes.

Fig 1. Heat Map of the top 3 genes with dendrogram
above.
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Survival analysis
Survival analysis did not yield any

meaningful results as the survival trends between
each cluster are too similar to one-another. The
Kaplan-Meier plot (Fig. 2) displaying lines very
close to one-another implies that the survival of each
cluster is not dependent on the clusters
formed/information used to form the clusters.

Fig 2. Kaplan-Meier plot of 4 clusters from mutation data
(progression free survival)

Cluster composition analysis
We can observe that a majority of the basal

subgroups are in cluster 2, that a majority of cluster
3 is composed of luminal A and that cluster 1 is
mainly a split of all subtypes (Appendix A, fig 6).
No other significant differences were observed in
any of the other clinical features.

Differential analysis
Differential analysis yielded results that can

be displayed using an MA plot (Appendix A, fig 7),
in which a majority of the samples in the dataset
have a log fold change of ~ 1 to -1, which can be
observed especially as the mean of normalized
counts increases.

Pathway analysis
A heatmap was formed to examine the

quality of mapping from mutation analysis to
differential analysis by plotting each sample vs the
top 10 up and downregulated genes (Appendix A,
figure 8). From the top to the bottom are the top 10
downregulated genes and top 10 upregulated genes
respectively. The clusters in the top row are not clear
sections like in mutation analysis (Fig 1), implying
that the mapping from mutation data to RNA
sequence data is not very good.

Pairwise analysis
As mentioned in the methods section,

pairwise analysis was performed on the results of
differential analysis due to the nature of log2 fold
change as a method to measure changes in
expression level. The log2 fold changes of 3 pairs
were examined, and will be denoted by P#
(numerator, denominator), the pairs being: P1
(cluster 1, cluster 2); P2 (cluster 1, cluster 3); P3
(cluster 2, cluster 3). The up and down regulated
pathways are pathways that are either up or
downregulated in the numerator cluster relative to
the denominator cluster.

𝑙𝑜𝑔
2
(𝑓𝑜𝑙𝑑 𝑐ℎ𝑎𝑛𝑔𝑒) =  𝑙𝑜𝑔

2
( 𝑐𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛 1

𝑐𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛 2 )
- If log2(fold change) > 0, it indicates

upregulation in Condition 1 compared to
Condition 2.

- If log2(fold change) < 0, it indicates
downregulation in Condition 1 compared to
Condition 2.

- If log2(fold change) = 0, it indicates no
change in expression.
The top 5 most up and down regulated

pathways can be found in appendix A, figure 9. Only
pairs 1 and 3 were chosen for analysis based on the
cluster distribution found on the pathway analysis
heatmap. This is because there is little to no
separation between cluster pair 1 and 3 in
comparison to cluster pair 1 and 2, and cluster pair 2
and 3.

Discussion
Clinical Analysis

From the clinical data, a few demographic
characteristics of patients were determined, all of
which have been observed in literature. Majority of
patients were female, which is the case with breast
cancer, however men make up 10% of breast cancer
cases, which means they were underrepresented in
the dataset [4]. Most breast cancer patients are
between the age of 40 and 70, with the mean age
being 58.5, this is consistent with literature reports
of median age of 62 [1]. Within different races,
different distributions of breast cancer subtypes were
observed. LumA was the predominant type across
White, Asian and Black or African American
patients. Black or African American patients had the
highest likelihood of having basal type (compared to
other races), and kaplan-meier survival analysis
found lower survival outcomes in those with basal
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type compared to lumA; both these findings are
consistent with literature [3]. Kaplan-meyer analysis
found Black or African Americans with the basal
subtype have lower survival outcomes than those
with the LumA subtype. Asian patients have the
highest likelihood of having the HER2+ subtype,
which has also been reported in literature [5, 6].
Though the analysis did not show correlation
between being HER2+ and having lower survival
outcome for Asian patients (or in general), literature
does suggest HER2+ patients have a worse
prognosis compared to LumA [3]. It was found that
higher stages have worse disease specific survival
outcomes, which is also observed in literature [3].
There were no findings during analysis for the DSS
outcomes of all patients with different subtypes,
however literature reports heavily that there are
differences [3].

Mutation Analysis - Clustering
It was observed during initial data

exploration, and difficulty clustering, that many
subtypes of breast cancer have the same driver
genes, TP53, TTN, PIK3CA. This matches the
findings of research, which finds TP53 and PIK3CA
as the most dominant driver genes across all
subtypes of BRCA. In fact, the activation of
PIK3CA is an early sign of malignant
transformation, meaning the cells started to acquire
cancer characteristics, resulting in a metabolic
reprogramming. TP53 on the other hand, responsible
for regulating cellular division, is characterized by
its inactivation, which leads to the frantic
reproduction of tumor cells [7].

Due to the prevalence of activity around
these genes in all cases of BRCA, determining clear
clusters containing a somewhat even distribution of
patients across each cluster proved difficult. Upon a
thorough investigation of our data, we determined
that certain characteristics were skewing our results.
For example, many patients had low impact
mutations, such as silent mutations, which had no
contribution to our analysis. Furthermore, patients
with wild type characteristics, mainly having an
insertion or ONP variant types, were discarded, to
only keep deletion and SNP variants.

Survival analysis on the generated clusters
was done using Kaplan-Meier curves; looking at
disease specific survival and then progression free
survival turned up no significant differences between
the three clusters. However, it is known through
literature that there are differences in survival
outcomes in different subtypes of breast cancer [3].
This would indicate the clusters had overlap between

the known subtypes of cancer, and were not very
well differentiated. However, the clustering
algorithm did separate Luminal subtype types
(making up the large majority cluster 3), and Basal
and Her2 subtypes (making up the majority of
cluster 2). So although the clustering was not
optimal, it could still yield some results on different
clusters of breast cancer and the different pathways
involved.
Differential Expression Analysis

By looking at the heat map generated using
the genes, we can see the clusters formed by the
dendrogram. We can notice that the separation
between the clusters is not optimal. Likely due to the
complications during mutation analysis (many types
of breast cancer having the same driver genes which
meant the hierarchical clustering algorithm could not
differentiate well between them). Cluster 1 (C1) and
cluster 3 (C3) for example form the wide majority of
the patients in terms of variation, meanwhile cluster
2 (C2) is not as much scattered, with most
observations being concentrated on one side of the
heat map. Comparing C1 and C3 is therefore
pointless due to the widespread of the observations.
We therefore focused on comparing C1 and C2, and
C2 and C3.

The differentially expressed pathways
between C1 and C2 seem to have importance in how
breast cancer progresses, and these pathways have
been cited in literature as being important in current
immunotherapies, or as having potential to be such.
The top three downregulated (in C1 with respect to
(w.r.t.) C2) pathways observed during the first
piece-wise round of DEA were cell cycle, natural
killer cell mediated cytotoxicity, and antigen
processing and presentation. All three of these
pathways are currently being targeted in
immunotherapies to treat breast cancer.

First, the cell cycle being differentially
expressed is expected in cancer, as the cell begins to
shift its metabolism to become a tumor, so does its
cycle, inactivating secondary pathways, and
diverting all energy pathways towards the one goal
of growing the tumor. Certain genes, such as
GADD45, involved in tumor suppression [8], are
differentially expressed in different subtypes of
cancer. The cell cycle pathway map shows GADD45
being overexpressed for C1. GADD45A is typically
overexpressed in LumA and LumB subtypes, which
C1is largely composed of, and underexpressed in the
triple-negative type (which largely falls into the
basal subtype). Studies have found that within the
triple-negative breast cancer type, expression of
GADD45A is associated with worse outcomes and
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categorizing cancer with both of those features as
high risk may help with finding appropriate
treatment plans [9]. Other genes such CDK1, which
is involved in tumor growth, are downregulated in
C1 w.r.t C2, suggesting inhibition of this pathway
may be more effective for treating C2 than C1 (10).

Second, the natural killer (NK) cell
mediated cytotoxicity is the second most
downregulated pathway in our analysis. This finding
matches the research, NK cells are major
contributors to the anti-tumor response, and
downregulating them would offer the best conditions
for the tumor to grow [11]. In treating HER2+ breast
cancer specifically, better outcomes have been
achieved when using targeted immunotherapy that
features inducing the cytotoxic factors that are part
of the antibody dependent cell-mediated cytotoxicity
(ADCC) [12]. This therapy involves the patient
receiving enriched natural killer (NK) cells, which
causes upregulated ADCC specifically to target and
destroy breast cancer cells [12]. In some breast
cancer patients, it has been found that NK cells have
lower cytotoxicity, this is characterized by lower
levels of p-30 related proteins; this includes NKp46
[12] which appears as downregulated in C1 (relative
to C2) in the natural killer cell mediated cytotoxicity
pathway. Low concentrations of NK cells are
typically seen in HER2 and Luminal cancer
subtypes, as these subtypes have a higher tendency
to lose the ability to synthesize NK cells in
comparison to basal-type [12]. C1 is largely
composed of luminal subtype cancer, and C2 is
majoritarily formed of basal subtype, so this finding
is consistent with literature.

Other genes in this pathway such as KIR,
which codes for inhibitory/activation receptors
necessary for natural killer function [13], and RAE1
which is overexpressed in certain lines of breast
cancer and contributes to induction of EMT features
in cells [14], were found to be differentially
expressed in our analysis, matching literature results.

Third, the antigen processing and
presentation pathway is involved in the activation of
NK mediated cytotoxicity, and the CD8 and CD4C
T-cell receptor signaling pathways. It is reasonable
that the pathway contributing to inhibition of
growth/reproduction of tumour cells would be less
expressed in patients with cancer. The NK
cytotoxicity pathway is downregulated in C1, so
antigen processing and presentation pathway being
downregulated in C1 as well is consistent with this
result. All of these pathways are involved in the
body’s immune response, and as discussed
previously can potentially be exploited to target

cancer cells. Current explorations of activating this
pathway to induce ADCC have shown promising
results, suggesting inhibition of this pathway is
important to cancer progression [15]

DNA replication is the fourth most down
regulated pathway in C1 w.r.t. C2, indicating DNA
replication is occurring at higher rates in C2. High
levels of DNA replication are associated with poorer
outcomes in breast cancer; clinical trials are being
undergone (as of 2022) looking at targeting this
pathway for the treatment of HER2 and triple
negative type breast cancer [16]. This implies Her2+
and triple negative (which mostly make up C2) are
better candidates for this type of therapy, perhaps
due to more up regulation as this analysis would
suggest.

The fifth most down regulated pathway (C1
w.r.t. C2) is the cell adhesion molecules (CAM)
pathway. CAMs are important to maintaining cell
connectivity, and in cancer, the deregulation in
expression of certain proteins is a large contributor
to epithelial mesenchymal transition (EMT), and
subsequently cancer metastasis. In the pathway,
CLDN was highlighted as one of the differentially
expressed genes. CLDN codes for a family of
transmembrane proteins that play a major role in the
integrity of tight junction TJs, which keep cells
connected [17]. TJ dysregulation is frequently seen
during EMT, and is therefore in highly metastatic
cancers, low expression of proteins involved in TJ,
such as CLDN proteins, is typically seen [18].
Changes in the expression of CLDN proteins are
frequently seen in breast cancer [17,18], and studies
have found that their inhibition or over-expression
can play a role in a tumor’s progression [17].

Other differentially expressed proteins that
were highlighted in this pathway, including MAG
and CDH2, have also been cited in literature as
important in determining progression or presence of
cancer, and potentially important in creating more
targeted therapies or earlier detection strategies [19,
20]. Based on literature, the CAM pathway seems to
be very significant in breast cancer progression, and
potentially important in developing better
classifications and therapies of cancer.

Upregulated pathways of C1 with respect to
C2 include MAPK signaling pathway, endocytosis,
fatty acid metabolism, vascular smooth cell
contraction, circadian rhythm - mammal.

The MAPK signaling pathway links together
extracellular signals and intracellular responses,
which can change the cells ability to proliferate,
differentiate, and undergo apoptosis (programmed
cell death). In pathway analysis of how the genes are
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differentially expressed, there is a mix of genes that
are either up or down regulated in C1 with respect to
C2. AP1 is an example of the gene that is
upregulated in cluster 1; it is related to a cell's ability
to adapt to different environments, which is a trait
commonly exhibited by cancer cells especially those
that metastasize. AP1 has been described in breast
cancer, and its overexpression is typically indicative
of an invasive cancer as the cancer cell gains better
ability to travel, proliferate, and survive in a variety
of microenvironments [21]. This may seem
contradictory to earlier described cell cycle pathway
downregulation (of C1 with respect to C2), however
a study has found that different types of breast
cancer have different methods of metastasis that can
change the rate of progression or the site of
metastasis [22]. The signaling pathway did show
cluster 1 had downregulation in certain genes,
including NFkB, which is responsible for the
distribution in normal cell proliferation and cell
apoptosis balance in breast cancer cell lines [23]. It
is therefore possible the clusters are representing two
different mechanisms that occur for different
groupings of breast cancer.

In breast cancer, overexpression disruptions
in the endocytosis pathway are responsible for
helping the cancer cell monitor and evade tumor
immune responses, as well as helping in the nutrient
scavenging processes [24]. In treatment, these
disruptions make it difficult for antibodies to bind to
the cell surface, which reduces (or eliminates) the
efficiency of immunotherapies previously described
involving activation of ADCC [24]. This means C1
would likely have a poorer response to traditional
immunotherapies, which is in line with findings
from the downregulated pathways which found C2
to potentially be a better candidate for those types of
therapies.

Fatty acid metabolism is commonly altered
in cancer, to induce creation of more fatty acid
building blocks, which can then be used to construct
membranes. This plays a role in the cancer cells
ability to signal, and grow or metastasize [25]. It has
been found that different subtypes of breast cancer
have different changes in the fatty acid metabolism,
and these could suggest that they need different
approaches to treatment [26]. The differential
expression in genes in the fatty acid metabolism
pathway supports that the two clusters need to be
approached differently due to the cancers involving
different pathways for growth, proliferation, and
signaling.

The circadian rhythm is a potential indicator
for patient prognosis and responsiveness to

therapy/drugs [27]. Although as a whole the pathway
is more upregulated in C1 w.r.t. C2, there are certain
genes, such as CLOCK, that are upregulated in C2
(w.r.t. C1). Upregulation of CLOCK is associated
with high grade glioma (brain/spine cancer), and is
one of the genes that could be used as an indicator of
a patient's prognosis and/or response to certain kinds
of treatment [27]. On the other hand, PER is
upregulated in C1 w.r.t. C2, and can also be used as
an indicator to assess the same outcomes to
treatment as CLOCK [27]. This could be due to the
duality of CLOCK; it act as either an oncogene or a
tumor suppressor in different cancers [27], so it may
be the case that it is already acting as a tumor
suppressor in C2, meaning only C1 would respond
to “clock” treatments.

Now looking at the comparison of C2 w.r.t.
C3, upregulated pathways include cell cycle, NK
cell mediated cytotoxicity, antigen processing and
presentation, DNA replication, and CAM. All of
these were also observed to be downregulated in C1
w.r.t. C2, which is not only suggestive of C1 and C3
being very similar (as assumed after generating
heatmap), but also confirm the opposing behaviors
between basal and Her2 type, vs luminal types. This
also confirms that our findings match the literature.

As for the downregulated pathways, the 5
most downregulated are Circadian rhythm -
mammal, Valine, leucine and degradation, focal
adhesion, fatty acid metabolism, and endocytosis.
Circadian rhythm, fatty acid metabolism, and
endocytosis being upregulated in C2 with respect to
C1 and C3, suggests these pathways are indeed
differences between C2 and the other clusters. For
the circadian rhythm, certain papers associate
variations in regulations of certain genes such as
PER and BMAL1 to the breast cancer subtypes.
Additionally variations occur the most within the
luminal A group when compared to basal types [28].

The focal adhesion pathway covers the
much broader signal transduction pathways that are
characteristic of breast cancer. This is because genes
such as FAK and PAK are heavily expressed in
cancer patients, especially at the stage of metastasis
[29][30]. In this analysis case, the downregulation of
this pathway in C2 when compared to C3 suggests
that basal and HER2 types require these pathways to
a lesser extent than luminal A and B. Additionally,
Bcl2, a protein used as prognostic for breast cancer,
was found by research to be highly upregulated in
luminal A [31], a fact that our findings support,
since C2 is downregulated compared to C3.
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The valine, leucine, and isoleucine, also
called branch chained amino acids (BCAA), are part
of a nine amino-acid group who’s dysregulation is
directly associated with cancer progression [32].
There is no clear cut decision as to the exact utility
of BCAAs, as they contribute to the inhibition of
cancer, by stopping tumor migration, but other
research also suggests that with the right dosage,
these amino-acids can lead to the opposite effect,
contributing to the size growth, and progression of
the tumor [32]. In the case of our clusters, C2 was
found to be downregulated compared to C3.

Limitations
Most of the limitations in this study come

from limitations in the heatmap hierarchical
clustering method of mutation data. Despite careful
pre-processing, the heat map method of clustering is
limited in that it can only see whether a sample has a
mutation on a gene or doesn’t, but it is unable to
differentiate what kind of mutation. Scaling the
onco-matrix before generating the heat map led to
genes with much lower significance in literature
being prioritized, so this method was disregarded.
The mutation clusters having overlap with one
another led to poorer mapping in the differential
expression phase of the analysis, which meant all
three clusters could not be compared to each other
piece-wise as originally planned. This limitation
meant it could only be suggested how expression of
cluster 2 pathways were relative to clusters 1 and 3,
and that results were perhaps not as meaningful as
they would have been with better mapping and
subsequently more piece-wise analysis run.

Conclusion
In our analysis, we aimed to uncover the different
factors responsible for the growth and propagation
of breast cancer using TCGA data. The dataset we
investigated gave us a lot of insight into the different
pathways involved with the proliferation of the
tumors, with specific data about factors such as age,
race, stage of disease, tumor subtypes, and variant
types. We further examined the dataset to determine
the pathways that are upregulated/downregulated the
most within our genes. From that data we were able
to cross-examine our findings with the literature,
which matched our conclusions in most of the cases.
The limitations related to heat map clustering were
thoroughly investigated during the pre-processing
stage to minimize. Using a different way of
clustering could potentially yield better defined

clusters which could help enhance the quality of our
findings. Nonetheless, our conclusions could be used
for a deeper investigation of treatment plans that
could target gene expressions directly, effectively
hindering a tumor’s growth.
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Appendix A: Tables and figures

Figure 1: Pie charts of subtype distributions within: a. White participants. b.Black/African American participants,
c. Asian participants, d. American Indian or Alaskan Native participants
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Figure 2: Survival analysis based on subtypes for: a. White, b.Black/African American, c.Asian participants

Figure 3: Survival analysis based on tumor state using disease specific survival status
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Fig 4. Plots representing the frequency of: a. Classes of Variants, b. Types of Variants, c. Types of Mutations, d. Mutated Genes
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Fig 5. Bar Chart of the mutations occurring in each gene

Fig 6. Cluster composition barchart: a. Subtypes in each cluster, b: Age distribution in each cluster
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Fig 6. Cluster composition barchart: c. Races in each cluster ,d: Presence of radiation therapy in each cluster

Fig 7. MA plot based on significant results (padj < 0.05) of differential analysis
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Fig 8: Heatmap of top 10 downregulated genes and top 10 upregulated genes
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Figure 9: top 5 upregulated and down regulated pathways for pairs a.1,2; b.1,3; c.2,3
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Figure 10: Age distribution of patients

Figure 11: Kaplan-Meier plot with 4 clusters
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1,2 down regulated pathways

Figure 12 DNA replication pathway
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Figure 13 Cell cycle pathway
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Figure 14 Cell adhesion molecules pathway
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Figure 15 Antigen processing and presentation pathway
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Figure 16 Natural killer cell mediated cytotoxicity pathway
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1,2 upregulated pathways

Figure 17 fatty acid degradation pathway
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Figure 18 MAPK signaling pathway
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Figure 19 endocytosis pathway
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Figure 20 vascular smooth muscle contraction pathway
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Figure 21 circadian rhythm pathway
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2,3 downregulated pathways

Figure 22 fatty acid degradation pathway
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Figure 23 valine, leucine and isoleucine degradation pathway
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Figure 24 MAPK signaling pathway
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Figure 25 focal adhesion pathway
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Figure 26 circadian rhythm pathway
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2,3 up regulated pathways

Figure 27 DNA replication pathway
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Figure 28 Cell cycle pathway
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Figure 29 Cell adhesion molecules pathway
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Figure 30 Antigen processing and presentation pathway
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Figure 31 Natural killer cell mediated cytotoxicity pathway

38


